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Abstract We consider two-stage adjustable robust linear optimization problems with
uncertain right hand side b belonging to a convex and compact uncertainty set U.
We provide an a priori approximation bound on the ratio of the optimal affine (in b)
solution to the optimal adjustable solution that depends on two fundamental geomet-
ric properties of U: (a) the “symmetry” and (b) the “simplex dilation factor” of the
uncertainty set ¢/ and provides deeper insight on the power of affine policies for this
class of problems. The bound improves upon a priori bounds obtained for robust and
affine policies proposed in the literature. We also find that the proposed a priori bound
is quite close to a posteriori bounds computed in specific instances of an inventory
control problem, illustrating that the proposed bound is informative.
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1 Introduction

We consider the following two-stage adaptive robust linear optimization problem,
I gg4qp: (U) with an uncertain right hand side.
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ZAdapt U) = min ¢'x + max mind"y(b)
beld y(b)

Ax +By(b) > b, Vb e U (D
x,y(b) > 0,

where A € R™™" B e R™™ ¢ e R, d € R}?,U{ C R is a convex and compact
uncertainty set of possible values of the right hand side of the constraints. For any
b € U, y(b) denotes the value of the second-stage variables in the scenario when
the right hand side is b. Problem (1) models a wide variety of adaptive optimization
problems such as the set covering, security-commitment for power generation [12,13]
and inventory control problems (see our reformulation in Sect. 5).

In this paper, we study for Problem (1) the power of affine policies, i.e., solutions
y(b) that are affine functions of b. Given that finding the best such policy is tractable,
affine policies are widely used to solve multi-stage dynamic optimization problems.
While it has been observed empirically that these policies perform well in practice,
to the best of our knowledge, there are no theoretical performance bounds for affine
policies in general.

Hardness. The problem ITaqqp: () is intractable in general. Feige et al. [14] prove
that a special case of Problem (1) can not be approximated within a factor better than
O(logm) in polynomial time unless NP € TIMEQ2CWM), where n refers to the
problem input size. However, an exact or an approximate solution to Problem (1) can
be computed efficiently in certain special cases.

If U is a polytope with a small (polynomial) number of extreme points, Problem
(1) can be solved efficiently. Instead of considering the constraint Ax + By(b) > b
for all b € U, it suffices to consider the constraint only for all the extreme points
of U. Thus, the resulting expanded formulation of Problem (1) has only a small
(polynomial) number of variables and constraints which can be solved efficiently.
Dhamdhere et al. [13] consider Problem (1) with A = B. In this case the prob-
lem can model the set covering, Steiner tree and facility location problems. In this
case, and when the set I/ has a small number of extreme points, Dhamdhere et al.
[13] give approximation algorithms with similar performance bounds as the deter-
ministic versions. Feige et al. [14] extend to a special case of the uncertainty set
with an exponential number of extreme points and give a polylogarithmic approx-
imation for the set covering problem in this setting. Khandekar et al. [18] con-
sider a similar uncertainty set with an exponential number of extreme points as [14]
and give constant factor approximations for several network design problems such
as the Steiner tree and uncapacitated facility location problems. In these papers
the algorithm and the analysis is very specific to the specific problem addressed
and does not provide insights for a tractable solution for the general two-stage
Problem (1).

Approximability. Given the intractability of IT444p: (U), it is natural to consider sim-
plifications of ITaqqp, (). A natural approximation is to consider solutions that are
non-adaptive — that is y(b)=y. In this case, Problem 174, ({/) reduces to the robust
optimization problem
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On the performance of affine policy

Zrob(UU) = min cTx + dTy
Ax+ By >b, Vbe U/ 2)
X,y > 0.

Problem (2) is solvable efficiently. Bertsimas et al. [11], generalizing earlier work
in [9], provide a bound for the performance of robust solutions which only depends
on the geometry of the uncertainty set. In particular, for a general convex, compact
and full-dimensional uncertainty set ¢/ C R”, they provide the following bound for
two-stage adaptive optimization problems:

ZAdapt(u) < Zrop(U) < (] + g) : ZAdapt(u)s

where p and s are the translation factor and the symmetry of the uncertainty set U
which described in Sect. 2.

Affine Policies. Under this class of policies, y(b) = Pb + q, that is the second stage
decisions depend linearly on b:

zafr(U) = min ¢"x + max min dTy(b)

beld y(b)
Ax+By() >b, Ybe U 3)
X, y(b) =0
y(b) =Pb +q.

Affine solutions were introduced in the context of stochastic optimization in [23] and
then later in robust optimization in [5] and also extended to linear systems theory [3,4].
Affine policies have also been considered extensively in control theory of dynamic
systems (see [2,6,7,15,21,24] and the references therein). In all these papers, the
authors show how to reformulate the multi-stage linear optimization problem such
that an optimal affine policy can be computed efficiently by solving convex optimiza-
tion problems such as linear, quadratic, conic and semi-definite. Goulart et al. [15]
first consider the problem of theoretically analyzing the properties of such policies and
show that, under suitable conditions, the affine policy has certain desirable properties
such as stability and robust invariance. There are two complementary approaches for
studying the performance of affine policies: (a) a priori methods which evaluate the
worst-case approximation ratio of affine policies over a class of instances and (b) a
posteriori methods that estimate the approximation error for each problem instance
individually. The bound we propose in this paper is an a priori bound. There have
been various studies in the literature for developing a posteriori bounds to evaluate
the performance of affine policies for particular instances [15,16,25-27]. Kuhn et al.
[19] consider one-stage and multi-stage stochastic optimization problems, give effi-
cient algorithms to compute the primal and dual approximations using affine policies,
and determine a posteriori performance bounds for affine policies on an instance by
instance basis in contrast to the a priori performance bounds we derive in this paper.

Bertsimas and Goyal [10] show that the best affine policy can be §2 (mY%7%) times
the optimal cost of a fully-adaptable two-stage solution for I 44p, (U4) for any § > 0.
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Furthermore, for the case A € ]R’f *™ they show that the worst-case cost of an optimal

affine policy for ITagaqp: (U) is O (4/m) times the worst-case cost of an optimal fully-
adaptable two-stage solution. However, unlike the bounds in [11], these bounds do not
depend on U.

Our main contribution in this paper is a new approximation bound on the power
of affine policies relative to optimal adaptive policies that depends on fundamental
geometric properties of I/ and offers deeper insight on the power of affine policies.
Specifically, we show that

A1+ 2)
Tﬁs 'ZAdapt(u)s

s

ZadaptU) < zagU) <

where X, p and s are the simplex dilation factor, the translation factor and the symmetry
of the uncertainty set / described in Sect. 2. We also show that for many interesting
uncertainty sets this new bound improves the bounds discussed in [10]. The bound
demonstrates theoretically that the improvement on the performance of affine policies
compared to robust policies can be significant. We further provide computational
evidence in the context of an inventory control problem that shows that the geometric
a priori bound we obtain in this paper is quite close to the a posteriori bounds that
we get for a random instance of the inventory control problem. This suggests that our
geometric a priori bound is indeed informative.

The structure of the paper is as follows. In the next section, we introduce the
geometric properties of convex sets we will utilize and in Sect. 3, we state and prove the
main approximation bound. In Sect. 4, we compute the bounds for specific examples
of U and compare it with earlier bounds illustrated in [11]. Finally, in Sect. 5, we
demonstrate the effectiveness of the proposed bound in the context of an inventory
control problem.

2 Geometric properties of convex sets

In this section, we review several geometric properties of convex sets I/ that we use
in the paper.

2.1 The symmetry of a convex set

Given a nonempty compact convex set Y C R™ and a point b € U, we define the
symmetry of b with respect to U/ as follows:

sym(b, ) := max{a > 0:b+a(b—b) clU, Vb e U}. 4)

In order to develop geometric intuition on sym(b, I/), we first show the following
result. For this discussion, we assume that {/ is full-dimensional.
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On the performance of affine policy

Lemma 1 Let L be the set of lines in R™ passing through b. For any line £ € L, let
bj, and b} be the points of intersection of line £ with the boundary of U, denoted 5(U)
(these exist as U is full-dimensional and compact). Then,
Ib=b7ll2  IIb=b;l2 }
Ib—byl2” Ib=byl2 |’

[b=b{l2  IIb=bjl }
Ib—byll2” lIb=byl2 |

a) sym(b, U) < min{

b b, /) = min mi
) sym( ) 1@1;12 mm{
The symmetry of set I/ is defined as
sym(U{) := max{sym(b, ) | b € U}. (@)

An optimizer by of (5) is called a point of symmetry of /. This definition of symmetry
can be traced back to [22] and is the first and the most widely used symmetry measure.
We refer to [1] for a broad investigation of the properties of the symmetry measure
defined in (4) and (5). Note that the above definition generalizes the notion of perfect
symmetry considered by [9]. In [9], the authors define that a set{/ is symmetric if there
exists by € U such that, forany z € R™, (bg+2z) € U < (bg —z) € U. Equivalently,
b el & (2bp—b) € U. According to the definition in (5), sym(l/) = 1 for such a set.

Lemma 2 [1] For any nonempty convex compact set U < R™, the symmetry of U
satisfies

<syml) < 1.

|-

The symmetry of a convex set is at most 1, which is achieved for a perfectly sym-
metric set; and at least 1/m, which is achieved by a standard simplex defined as
A= {x e RY | >, xi < 1}. The lower bound follows from the Léwner-John
Theorem (see [1]).

2.2 The translation factor of a convex set

For a convex compact set Y C R”', we define the translation factor of b € U with
respect to U, as follows:

p(b,U) :=min{e e Ry |U — (1 —a) b C R}
In other words, U’ := U — (1 — p)b is the maximum possible translation of I/ in

the direction —b such that /" C R’}. Figure 1 depicts the geometry of the translation
factor p.

Lemma 3 [11] LetU C RY be a convex and compact set such that by is the point of
symmetry of U. Let s := sym(U) = sym(bg, U) and p := p(U) = p(bo, U). Then,

(1+3).b03b, Vb € U.
S
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u

o

Fig. 1 Geometry of the translation factor

2.3 The simplex dilation factor of a convex set

In this section, we introduce a new geometric property of a convex set that is critical
in bounding the performance of affine policies. For any convex set I/ we associate a
constant A (/) in the following way.

In dimension m, a simplex S is a convex hull of m 4 1 affinely independent points.
Bertsimas and Goyal [10] show that the affine policy is optimal for two stage adaptive
optimization problems when the uncertainty set is a simplex. For any convex set
U € R™, we define the simplex dilation factor A := A(U) to be the smallest number
such that there is a simplex S containing the symmetry point by and

SCUCA-(S—Dbg) + by. 6)

Figure 2 depicts the definition of A and its calculation. We next provide some examples
of calculation of A.

: : Tati .« Ibo—ball>
Fig. 2 The simplex dilation factor X is TBo=b1T>
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On the performance of affine policy

Lemma 4 For a unit ballld := {b: |[((b—b)|2 < 1} € R, A(U) = m.

Proof Without loss of generality, let I/ be a unit ball in R” (centered at the origin)
and S be a regular (the distance of every two vertices is the same) maximum volume
simplex inside the unit ball /. Let vy, . . ., vip+1 be vertices of such a simplex S. Then,
we have:
1. ||vilp=1fori=1,...,m+ 1.
2. vi-vj = —% fori # j.

We next show that S C U C m - S. We first claim that for any point w in the
boundary of S, we have |w|» > % Since w is on the boundary of S, it is on one of
its facets. Without loss of generality, we can assume that w is on the facet containing

the vertices vy, ..., vm. Therefore,
W=a1Vi+ -+ &uVm, &+ --+a, =1

We then have

2 T 2 2 2 2 T
Wil2® =w" -w=oajllvill2" +--- + o, |[Vml2" + 2 E Vi - Vj
i#]
2
=a%+~~-+a,2n—— E oo
m =
i#]

implying that [|w]|, > % for any point w in the boundary of S. Thus, a ball of radius
% is contained in S, i.e., % C S. So, we have:
ScUCm-(S—-0)+0.

Therefore, A(Uf) < m.
On the other hand, consider

. 1 1
W!=—Vi+- -+ —Vn.
m m
We then have
2 er o 17 2 12 2 12 7
IWlh? =W W = — il + - 4+ = lvml2® +2> = v’ -y
m m om
1 1 2 1
=ttt T e
i#]
1 m-D 1
T om m2  m?’

This implies that |W|j» = %, and so m is the smallest number A({/) such that

ScUcCrAU)-(S—-0)+0.

@ Springer



D. Bertsimas, H. Bidkhori

Therefore, A(U) = m. O

We proceed with calculating the simplex dilation factor for different sets. We omit
the proofs as they are not particularly illuminating.

Lemma 5 The simplex dilation factors for the following sets U are:

-1
1. Fortdy == {b: [bl, < 1.b >0}, AUy) =m'7 .
2. Forlh:={b:|Eb—-Db),<1}C R™ where E is invertible, A(U) = m.

3. Forlz = [b €0, 11" | XL, bi = k] Jfork e {1,...,m}, AU3) < k.

Finally we provide bounds for A(lf).

Theorem 1 [20] Let U be a convex body in R™ and let S be a simplex of maximal
volume contained in U and assume that the centroid of S is at the origin. Then S C
UCm+2) S, ie, \U) <m+2.

3 On the performance of affine policies

In this section, we state and prove a new bound on the suboptimality of affine policies.
We first state a result from the literature that affine policies are optimal when the
uncertainty set is a simplex.

Theorem 2 [10] Consider the problem I sqqp (U) such that U is a simplex, i.e., U =
conv{bl, ... b™1} where b € R™ forall j = 1,...,m such that b, ... bmH1
are affinely independent. Then, there is an optimal two-stage solution X, y(b) for all
b € U such that for allb € U, y(b) = Pb + q, where P is a real matrix of dimension
ny and m.

We next present a lemma that prepares the ground for our main result.

Lemma 6 Consider a convex and compact uncertainty set U, with a symmetry point

B
bo, symmetry s, translation factor p and simplex dilation factor A. For a = /\;1—:5)
we have '

1
- X(b—bo)+bo > b.
0
Proof Leta = M;j_rg ) , leading to
a—<
1+2=-222
N 1-— X
Applying Lemma 3, and substituting the above expression for 1 4 f, we obtain that
forallb e U,
(a—g)bo > (1—5)b,
A
leading to
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On the performance of affine policy

o (%(b —bo) +bo) > b.

We are now ready to prove the main result of the paper.

Theorem 3 Consider a convex and compact uncertainty set U, with a symmetry point
bo, symmetry s, translation factor p and simplex dilation factor ). Then,

A1+ 2)
A+ L

s

ZadaptU) = zagU) < “ ZAdapt U).

Proof First we show that when the uncertainty set is the simplex S C U, there is a
two-stage affine optimal solution x and P(b — by) + q, where q > 0.

Applying Theorem 2, we know that when the uncertainty set is the simplex S C U,
there is an optimal affine solution x and P(b) +q. We define q := q+P(bg). Therefore
x and y(b) = P(b — bg) + q is an optimal affine solution for the simplex S C U. By
the properties of I714q4qp: (U), y(bg) = P(bg — bg) + q = q > 0. Therefore, there is a
two-stage optimal affine solution x and P(b — bg) + q, where q > 0.

L
Starting with the solutions x and P(b — bg) + q and letting « = %, we define
the following affine solution for the uncertainty set ¢/ as follows: '
X = ax,
and
R o
y(b) := XP(b —bo) + q.
We first show that X and y(b) is a feasible affine solution for ITaqqp: U).

1. x > 0, therefore we have X = ax > 0.
2. Now we show that

. o
y(b) = XP(b —bo) +aq > 0.
Considering the definition of the simplex dilation factor, we know that
U C A-(S—Dbgy) + by.

Therefore, for any b € U, b= @ +bg € S.
We know that x and P(B —bo) + q is a feasible solution for ITqqp: (S). So,

P(b—bp) +q=>0
1
= P —by) +q>0
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1

=>oz(XP(b—bo)+q) >0
. o

= y(b) = XP(b —bg) +aq > 0.

3. Now, we show that
AX+By() >b, Vb e U.
Again, considering the definition of the simplex dilation factor, we know that

U C x-(S—bg) + by.

Therefore, for any b € U, b= @ + bg € S. Therefore, x and P(B —bo) +qis
a feasible solution for ITagap: (S).

Ax+B®P®b —bg) +q) > b
b — by

1
= Ax+B (XP(b —bo) + q) > + b ( by multiplying with o)

1
=« (Ax+B (XP(b —bo) + q)) > %(b —bg) + aby

— Aax+B (%‘P(b ~bo) + aq) > %(b — bo) + arby
By the definition of X and y(b) and Lemma 6
= AX + By(b) > b.
It only remains to show

zarrU) < o - Zadgapr U).

Recall that for any b € U, b= b_kb" + by € S.

zafr(U)
< min ¢'% + max dTy(b)
beld

P\ T (%
= d"(-P(b-b
minc” (ax) + rgl;/){( (A ( 0) + oeq)
. T T 1 . o b_b(]
=« |minc” (x)+maxd” { —P(b—bg)+q replacingb=——+4bg € §
beld A A
=« |:min ¢’ (x) + max € SAT(P(b — by) + q)}
b
< « - zaf(S)(becausex and P(B — bg) + q is an optimal affine solution for §)

=« - ZAdapt (S) from Theorem 2)
< o - Zadapt U) (because S C U).
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4 On the power of the new bound

In this section, we compare the bound obtained in this paper with the bound in [11]
for a variety of uncertainty sets. We first introduce two widely used uncertainty sets.

Budgeted uncertainty set. The budgeted uncertainty set is defined as,

m

Zbigk], for integer k € {1, ..., m}. @)

Ay = [b e [0, 11"
i=1

[11] show that

k
sym(A) = . bo(Ap) = e. ®)

m+k
Demand uncertainty set. We define the following set,

Dicsbi —card(S)u
Jcard(S)

DU, ) == [b e R

<T, vsgsz{l,...,m}].
9)

Such a set can model the demand uncertainty where b is the demand of m products;
w and I" are the center and the span of the uncertain range.

The set DU has different symmetry properties, depending on the relation between
pand I'. If p > I', the set DU is in fact symmetric. Intuitively, DU is the intersection
of an L, ball centered at ue with (2" — 2m) halfspaces that are symmetric with
respect to pe. If u < I', DU is not symmetric any more. [11] show that

Proposition 1 Assume the uncertainty set is DU.
1. If u > I, then

sym(DU) =1, by(DU) = ue. (10)

2. IfﬁF<u<F,then

Jmu 4+ T Wmu+I)Y(w+T1)
DU =" by(DU) = . 11
symU) = U= e mr e Y
3.[f0<pu < \/Ln?l“, then,
o mp+T _ Wmp+T)(w+ 1)
sym(DU) = Jmu+T)’ Po(DU) = 2 mpu + (1 + «/m)Fe' (12)

Define conv{A1, {e}} to be the convex hull of the standard m-simplex A; := {b €
1

R™ |eTb < 1,b > 0} and a point e :=
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Table 1 Bounds on the symmetry and the simplex dilation factor for various uncertainty sets

No. Uncertainty set Symmetry Upper bound for A
p—1
1 {b:bl, <1,b>0} ml/p m P
2 (b:|Eb—Db)|, <1} C Rf’ﬁ where E is invertible 1 m
| r1—1 p2—1
3 (b:lbly = 1 Ibly, <7 b=0) A max{m PT rm P2
4 Ag £ k
muy rm
5 DU, I, u>T 1 e+
1 Jmp+T miL rym
6 DU(,u,I"),ﬁI"<p,<F U T F+M+7M+F
1 Jmp+T mup rym
7 DUGD).ps ol Sl e DR
8 conv{Ay, {e}} ﬁ mrfl
9 (BeST |[IeB<1} i 1

In uncertainty set 9, S'_ﬁ is the cone of positive semidefinite matrices, and I is the identity matrix. I ¢ B is

the trace of the multiplication of I and B. For more details, see [11]

Table 2 The ratios =-E22— and <Al for various uncertainty sets

ZAdapt ZAdapt
No.  Uncertainty set Bound on —Reb Bound on —*AL
ZAdapt ZAdapt
1 =
1 {b:bll, <1,b>0} L+m? m P _m
mP +m
ol
—, E-! m(14+max i’ )
2 {b:|[E(b—Db)[2 <1} C Rﬁ 14 max;e(l,...,m} E‘—’ 7“;’]
. - i ;
where E is invertible m+max #’
1
. 1 s(14rm PT
3 {b”b”pl Slv”b”pz Sr,bZO} ey Y(rimi)’
s+rm P1

ri-1 rn-l
s=max ym Pl ,rm P2

s oA g

5 DU, M), n =1 1+ 5 Eq. (13)

6 DU, 1), =l <p<T 1+ %ﬁ)f Eq. (14)
1 NZIEoY)

8 conv{Ay, {e}} m ’"’2’%

9 (BeS" [TeB <1} 1+m 1

I e B is the trace of the multiplication of I and B

In Table 1, we calculate the symmetry and simplex dilation factor for several uncer-
tainty sets.

In Table 2, we compare the proposed bound on the suboptimality of affine policies to
the bound on the suboptimality of robust policies for IT44ap: (I4), which were obtained
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in [11]. In the following tables k is an integer. In Table 2, we define Eqs. (13), (14)
and (15):

r mp+I/m
(ﬁ + 1) T+u

(13)
r mpu+I/m
r+I'ym +1 mu+I/m
T+p/m I'+np 14
r+rym | mp+Iym (14)
T+p/m I'+un
m(u+T) +1 mu+I J/m
mp+I I+ (15)
Vm(p4T) + mu+I/m
Jmp+T I'+p

In Table 3, we calculate the ratios <AL / ZRob_ which demonstrates that the
ZAdapt ZAdapt

improvement of the performance of the affine solution compared to the robust solution
can be significant.

As illustrated in Table 3, the performance of the affine policy is significantly better
than the robust solution for ITa4qp;(U) for many widely used uncertainty sets /.
This includes the budgeted uncertainty set Ay, the demand uncertainty set DU(u, I"),
conv{Ay, {e}} and (B € S |[TeB < 1}.

Table 3 Upper bound on the ratio —<Aff / “Rob_ o simply zaf /ZRob

ZAdapt | ZAdapt
No. Uncertainty set Bound on the ratio —=Af / _ZRob
<Adapt [ <Adapt
1 {b:blp<1,b=0) T
mT’+m
2 (b:|Eb-b)|, <1} C R’ﬁ where E is invertible %
1l
m-+max Ei
2
3 A k2+m
r
(7+1)
" 4
4 DU(u, ), u>1T £+l+m/¢+1"\/ﬁ = 44m+/m
o I'+u
mp+I/m
1 T+p 4m
5 DU(w, I'), ﬁf <p<TI JmGAT) | mp T = Syt
Jmu+I T+
mu+I/m
1 T+p 4m
6 DU, D), p < =l TTdm_ mad TJm = Sma2 m]
Ftpym "~ T
m
7 conv{Ay, {e}} n—124m
9 BeS” [TeB < 1) T

I e B is the trace of the multiplication of I and B
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5 Comparison with a posteriori bounds

In this numerical study, we consider a multi item two-stage inventory control model
similar to the one discussed in [8]. The computational methods for solving the opti-
mization problem and calculating the affine policy performance have been described
in [17] and [19]. All of our numerical results are carried out using the IBM ILOG
CPLEX 12.5 optimization package.

The inventory problem can be described as follows. At the beginning of the second

by
period, the decision maker observes all product demands b = | : | € U. Each
b

product demand can be served by either placing an order x;, with unit cost c,; in
the first period, which will be delivered at the beginning of the second period, or
by placing an order z;(b) at the beginning of the second period which has a more
expensive unit cost ¢y, < ¢z and it is delivered immediately. If the ordered quantity
is greater than the demand, the excess units are stored in a warehouse, incurring a
unit holding cost cy,,. If there is a shortfall in the available quantity, then the orders
are backlogged incurring a unit cost ¢;; . The level of available inventory for each item
is given by [;(b). The decision maker wishes to determine the ordering levels for
all products x; and z;(b) that minimize the total ordering, backlogging and holding
costs. The problem can be formulated as the following two-stage adaptive optimization
problem.

m m m
min Z CxXi + r;1€ab){( (; c;zi(b) + Z max{c;, I; (b), cp, I; (b)})

i=1 i=1

Ii(b) = x; + zi(b) — b;

by
x>0,z>0b=|:|eU (16)
b |
b [0 . b
We define U* := ey | b | where 0, := | : | f m.Sob = | b | € *if and
0 ' 0
m O m

only ifb e U.

Lemma 7 The inventory control problem (16) can be reformulated to the standard
form of Problem (1) as follows:

m m m
min " cyxi + max (Z c,zi (D) + D o; (B))
i=1 €4 \i=1 i=1

0 (b)
2cp,

—x; +5i(b) — z;(b) > 0 (17)
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0;(b)
ti
2si(b) — xi — zi(b) > b;

0; >0,5,>0,x, >0,z; >0,b e U*.

+ xi + zi(b) > b;

Proof To bring the inventory control problem (16) into the standard form of Problem
(17), we provide a reformulation with the following steps. We start with Problem (16).

(a) First, max{c; I; (b), cy; I; (b)} can be replaced by introducing auxiliary decision
variables o; (b), serving as over-estimators for the max functions. Therefore, the
objective function can be replaced with

m m m
min ; Cy Xi + r;leazl/){( (; ¢z zi(b) + ; 0; (b)) .

and the following set of linear constraints are added to Problem (16)

0i(b) > ¢, 1;(b) (18)
0i(b) > cp; 1; (b)
0; > 0.

(b) Second, since fori = 1,...,m, ¢; is negative and ¢y, is positive, we replace

Constraints (18) with the following

oi(b
Bz = b (19)
Ch;
o;i(b
_a®) +x;i +zi(b) > b;
Cr;
0; > 0.
(c) Third, we introduce new auxiliary decision variables s1(b), ..., s, (b) and we
replace Constraints (19) with the following. Since 51 (b), .. ., s, (b) do not appear
in the objective function, the optimal value of the optimization problem will remain

the same.

oi(b)  x; &>_bi

S l 20
2, 2 2 2 20
0;(b)
- +xi +zi(b) = b;
Cy;
2s;i(b) — x; — zi(b) > b;

0i,8; > 0.
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(d) In the last step, we replace Constraints (20) with Constraints (21).

0i(b)
2cp,

—x; +s;(b) —z;(b) >0 21
_oi(b)

ti
2s5;(b) —x; —zi(b) = b;

0i,s; = 0.

+xi +2zi(b) > b;

It is clear that the optimal value of the optimization problem (16) do not change
during the steps (a), (b) and (c). For step (d), every o; (b), s; (b), x;, z; (b) which
satisfy Constraints (20), also satisfy Constraints (21).

In addition, we can always find o; (f)), S (B), Xi, Zi (B) satisfy Constraints (21) and
take the optimal value and also satisfy Constraints (20). So replacing Constraints
(20) with Constraints (21) does not change the optimal value of the optimization

_ b
problem. Moreover, since b = |: b i| € U* if and only if b € U. We can define
O
si(b) := s;(b), 0; (b) := 0; (b) and z; (b) := z; (b) and reformulate Problems (16),
7). O

For our computational experiments we randomly generate instances of Problem (17)
for various uncertainty sets, and compare the a posteriori bounds for the optimal affine
policy with our geometric a priori bound. The parameters are randomly chosen using
a uniform distribution from the following sets: advanced and instant ordering costs
are chosen from ¢y, € [0,5] and ¢;; € [0, 10], respectively, such that ¢y, < c;.
Backlogging and holding costs are elements of ¢, € [—10,0] and ¢, € [0, 5],
respectively.

We consider DU*(w, I", m), where

D iesbi —card(S)u
J/card(S)

DU(u, I', m) := [b e RY

‘51‘, vsgsz{l,...,m}].

Also we consider A’(kk m)? where

m

Zbifk], for kefl,....,m}. (22

i=1

Ae,m) = {b : belo, 11"

Following the definition of symmetry and simplex dilation factor, we have
sym(U™*) = sym(U) and also A(U™) = L(U).

We compare the a posteriori bounds for the optimal affine policy with our geometric
a priori bound for randomly generated instances of Problem (17) in Table 4. We find
that the geometric a priori bound is quite close to the a posteriori bounds for random
instances of the inventory control problem. This suggests that our geometric a priori
bound is indeed informative.
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Table 4 Comparing geometric bounds and computational bounds

No. Uncertainty set A posteriori bound Geometric bound Geometric bound
for affine policy for affine policy for robust policy

1 AE“S 25) 2.78 3 5

2 A?‘(] 36) 3.23 3.5 6

3 A’(“7 49) 2.67 4 7

4 AT8.64) 2.64 4.5 8

5 A>(k9 81) 3.21 5 9

6 ATIO,JOO) 3.1 5.5 10

7 DU*(2, 4, 4) 1.48 1.6 2.5

8 DU*(3,9,9) 2.06 2.07 3

9 DU*(2, 10, 10) 1.58 2.15 3.32

The bounds come from randomly generated data for ¢y, , ¢s;, cx; , cz; as explained in the beginning of the
section. For interested readers, we put this data at the following address: http://web.mit.edu/bidkhori/www/
index/Hoda_Bidkhori_files/data.xls

6 Concluding remarks

In this paper, we evaluate the performance of the affine policy for two stage adap-
tive optimization problems based on the geometry of the uncertainty sets. [11] has
linked the performance of adaptive and robust policies based on the symmetry of the
uncertainty set. In this work we link the performance of adaptive and affine policies
based on the notion of the simplex dilation factor of the uncertainty set. We found
(see Table 4) that our a priori bounds for affine policies significantly improve on the
symmetry bounds for robust policies, and are close to the a posteriori bounds.

Natural extensions of this work include the study of the performance of affine and
piecewise affine policies for multi-stage adaptive optimization problems.
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